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I. INTRODUCTION

Let us consider a fluid composed of two types of micro-
scopic particles: particlesA and particlesB. Let particlesA
not interact among themselves. They interact only with par-
ticles B which then interact among themselves. In this type
of fluid the interactionsA-B andB-B bring about interactions
among particlesA. These indirectA-A interactions are medi-
ated by particlesB. Now let particlesB be much smaller than
particles A so that the interactionsA-B and B-B can be
treated by means of classical hydrodynamicssby solving
Stoke’s problemd. The inducedA-A interactions are then
called hydrodynamic interactions. The objective of this paper
is to investigate fluids involving hydrodynamic interactions
sHI suspensionsd. In particular, we contribute to answering
the following two questions:sid Can the Smoluchowski
equation describing the time evolution of HI suspensions be
reduced to a simpler equation if our interest is focused only
on slower part of the time evolution?sii d What are the linear
and nonlinear responses of HI suspensions to imposed visco-
metric flows?

It is well known that the time evolution of HI suspensions
can be formulated with the phase-space distribution function
csr ,R,Vd serving as the variable characterizing the micro-
structuresthe equation governing its time evolution is the
Fokker-Planck type kinetic equationf1,2gd and also on a
more macroscopic level on which the configuration-space
distribution functiongsr ,Rd replacescsr ,R,Vd sthe equation
governing its time evolution is the Smoluchowski equationd.
By r we denote the position vector,R denotes the vector
connecting two particles, andV is their relative velocity. The
distribution functions c and g are related bygsr ,Rd
=edVcsr ,R,Vd. The physics involved in the passage from
the Fokker-Planck to the Smoluchowski description is the
elimination of fast processes related to inertia of the sus-
pended particles as they move through the fluid. The charac-
teristic friction timetfr is a time scale of the Fokker-Planck

equation. The characteristic relaxation time associated with
the Smoluchowski equation is the self-diffusion timetS fsee
Eq. s24d in Sec. IIIg. In this paper we formulate a more
macroscopic description on whichgsr ,Rd, the state variable
characterizing the microstructure in the Smoluchowski
theory, is replaced by its second momentmsr ,Rd of gsr ,Rd
with respect to the unit vectorn=R/R, R= uRu—i.e.,
mabsr ,Rd=sR2/4pdednnanbgsr ,Rd. The idea behind the re-
duction gsr ,Rd→msr ,Rd is to keep only the largest time
scale appearing in the spectrum of the self-diffusion process
in the absence of overall flows. To describe states of HI
suspensions bym has been suggested by Phan-Thienf3g. In
this paper we follow his suggestion. We show how the hy-
drodynamic interactions are expressed in terms ofm and
solve the reduced Smoluchowski equation numerically. We
recall that, in general, the advantage of introducing a
reduced—i.e., a more macroscopic—description is in estab-
lishing a more direct link between the microscopic physics
involved sin our case hydrodynamic interactionsd and the
macroscopic properties observedsin our case nonlinear rhe-
ologyd, and in simplifying the numerical calculations in-
volved in the process of obtaining detailed solutions of the
governing equations.

The second contribution of this paper is in deriving non-
linear rheology of HI suspensions. By the nonlinear rheology
we mean nonlinear responsessboth in the microstructure and
the stressesd to imposed simple shear and elongation flows.
Our limitation to time scales implies that responses to rapidly
varying swith the time scales that are smaller than the ones
kept in the governing equationsd external forces are outside
the scope of our investigation. We compare our results with
experimental dataf4g, direct numerical simulationssStoke-
sian dynamics of suspended particlesf5gd, and previous at-
tempts to solve approximatively the Smoluchowski equation
f6–10g ssee also Sec. Vd. We also show that the linear
rheology slinear response to the oscillatory shear flowd
implied by our results agrees with the investigations reported
in f11–13g.
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To appreciate the new challenges that we meet in this
paper, we compare briefly our investigation with the same
type of investigation conducted in the context of dilute poly-
meric suspensionsf14g. The state variable describing the in-
ternal structure of dilute polymeric suspensions is often cho-
sen to be also the pair correlation functiongsRd and the
equation governing its time evolution resembles the Smolu-
chowski equation for the HI suspensions. The essential dif-
ference between suspensions of structureless particles and
dilute polymeric suspensions is in the physical interpretation
of gsRd and in the interactions. In particle suspensions the
correlation functiongsRd characterizes interparticle correla-
tions sRd is in this case the vector connecting two suspended
particlesd, and in dilute polymeric suspensionsgsRd charac-
terizes intramolecular correlationssR is in this context the
end-to-end vector of a single moleculed. As for the interac-
tions, the interparticle interactions, determining macroscopic
behavior of particle suspensions, vanish asR→`. This is
true both for the direct interactionsgenerated by an interpar-
ticle potentiald and also for hydrodynamic interactionssthat
are not generated by a potentiald. Consequently, two sus-
pended particles become uncorrelated when they are far apart
which implies thatgsRd does not decay to zero asR→`. On
the other hand, the intramolecular interactions, determining
the macroscopic behavior of dilute polymeric suspensions,
tend to infinity asR→`. This then means thatgsRd tends
rapidly to zero asR→`. The asymptotic behavior ofgsRd in
HI suspensions is a source of anomaliesflike divergence of
moments ofgsRdg that render many of the methodsse.g.,
stochastic dynamic simulation or reductionsd developed for
solving the Smoluchowski equations corresponding to poly-
meric suspensions inapplicable to the HI suspensions. For
example, let us consider the method of reduction. For this
method to work, it is necessary that the time evolution can be
split into slow and fast. The existence of such a scale sepa-
ration is seen in the spectrum of the operator appearing in the
dissipative partsi.e., the part that does not involve the overall
flowd of the right-hand side of the Smoluchowski equation
snote that it is indeed a linear operatord. If the spectrum is, in
the vicinity of zero, discrete and sufficiently separated from
the rest of the spectrum, then the scale separation exists and
the eigenfunctions corresponding to the discrete eigenvalues
provide an appropriate basis for describing slow time evolu-
tion. In the case of polymeric solutions, the Smoluchowski
equation has such a property and the eigenfunctions corre-
sponding to the discrete eigenvalues are well approximated
by polynomial functionsf15g. This is the main reason why
the second momentfi.e., edRRRgsRdg serves as an appropri-
ate state variable in reduced theories. The Smoluchowski
equation for HI suspensions does not have this property;
moreover, the second moment does not even existfdue to the
fact thatgsRd→const asR→`g. Our method of reducing the
Smoluchowski equation for HI suspensions is based on the
observation that if we consider the dissipative operator as a
composition of two operators, one acting only on the angular
dependence and the other on the radial dependence ofgsRd,
then the angular part still keeps the properties guaranteeing
the scale separation. The radial dependence is then treated
separately by applying an appropriately adapted finite-
element method.

The most well-known example of HI suspensions is a
semidilute suspension of rigid spheres of diametera sa!L,
whereL is the dimension of the systemd. In this paper we
assume that the suspensions are incompressible, isothermal,
and homogeneous. The assumption of homogeneitysi.e., the
assumption that the correlation function is independent of the
position vectorr and the volume fraction of the suspended
particles is absent in the set of state variablesd prevents us
from investigating the experimentally observed flow-induced
diffusion of the suspended particles. We intend to return to
this point in a future publication

This paper is organized as follows. In Sec. II we present
the Smoluchowski equation for HI suspensions. We make no
attempt to discuss its derivation from microhydrodynamics.
Instead, our attention is focused on the macroscopic behavior
implied by it. In other words, we take the Smoluchowski
equation as given and investigatesfrom both the mathemati-
cal and physical points of viewd its solutions. In Sec. III, we
investigate asymptoticsas t→`d solutions and the related
problem of the compatibility of the time evolution with ther-
modynamics. This investigation gives us also an expression
for the extra stress tensor. In Sec. IV we reduce the Smolu-
chowski equation to a moment equation. We discuss its
physical content and, in Sec. V, we solve it numerically. The
solutions are then presented as responses of the microstruc-
ture and the stresses to imposed viscometric flows. Our re-
sults allow us to investigate the influence of hydrodynamic
and various interparticle interactions on the microstructure
and rheology.

II. SMOLUCHOWSKI EQUATION

Following Smoluchowskif16g, we choose to describe the
microstructure of suspensions by the pair correlation func-
tion gsRd, where the vectorR is the vector connecting two
suspended particles. The equations governing its time evolu-
tion is the Smoluchowski equation

]g

]t
= −

]

]Ra
SgRb

]va

]rb
D +

]

]Rg

sglgabDabd

+
]

]Ra
SgLab

]

]Rb

sU + kBT ln gdD . s1d

Here and throughout the text we use the summation conven-
tion ssummation over repeated Greek indicesd. By vsrd, we
denote the overall velocity of the suspension,r denotes the
position vector,D denotes the rate of a strain tensor,

Dab =
1

2
S ]va

]rb

+
]vb

]ra
D ,

and the tensorsL and l are kinetic coefficients which are
functions ofR, radius of particles,a, and density of particles,
np, or equivalently volume fractionf=s4/3dpnpa

3.
Without lost of generality the functionsLsR,fd, lsR,fd

can be written in the following form:

Lab =
kBT

3ph0a
Fs1sR/a,fd

RaRb

R2 + s2sR/a,fdSdab −
RaRb

R2 DG ,

s2d
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labg = Fm1sR/a,fd
RaRb

R2 + m2sR/a,fdSdab −
RaRb

R2 DGRg.

s3d

Regarding the tensorl, we take into account the fact thatl
enters the time evolution equations1d as well as the stress
tensorssee Sec. III A belowd only in symmetrized and trace-

less form,l̊, with respect to last two indices:

l̊gab =
1

2
Slgab + lgab −

2

3
dablgssD .

Below, we shall continue to use the symbols to indicate
symmetrized and traceless part of second-order tensors.

We have introduced the dimensional factorkBT/3ph0a in
L, becauseL plays the role of ananisotropicdiffusion ma-
trix describing a self-diffusion of particles in the presence of
hydrodynamic interactions;a is the diameter of the sphere,
h0 is the viscosity coefficient of the Newtonian fluid in
which the spheres are suspended,kB is the Boltzmann con-
stant, andT is the temperaturesassumed to be constantd.

Specific features of hydrodynamic interactions are ex-
pressed in the coefficientss1sR/a,fd, s2sR/a,fd,
m1sR/a,fd, andm2sR/a,fd. The functionss1 and s2 must
be non- negativesin order to guarantee the non-negativeness
of the diffusion matrixL—see Sec. IIId, but otherwise, they
can be seen as parameters in the governing equations that can
be adjusted to fit experimental data. In our computations in
Sec. V we consider only zeroth-order terms inf swe limit
ourselves only to binary interactionsd and we use expressions
of Batchelor and Greenf28g ssee Appendix Ad.

In order to be able to see how the hydrodynamic interac-
tions influence the evolution of the microstructure and the
rheology, we shall also consider suspensions with no hydro-
dynamic interactions. In such suspensions the surrounding
fluid imposes only a drag force on single particles and par-
ticles interact as rigid spheres—i.e., through hard-core inter-
actions. In Eq.s1d this corresponds to the choicel=0 and
L=dkBT/ s3ph0ad ss1=s2=1d.

By UsRd we denote the total two-particle potential energy
due to the particle-particle interactions. It is a sum

U = UHC + Unl

of the hard core potentialUHC,

UHCsRd = H0, for R. 2a,

`, for Rø 2a.
J s4d

and a nonlocal potentialUnl arising due to long-rangesi.e.,
beyond the intermolecule scaled interactions such as electro-
static forces or some self-consistent effective potential taking
into account multiparticle interactionssin with case it may
depend ongd. In this paper we shall take into account the
hard-core potential by applying specific boundary condition
at the surface of the particle,R=2a ssee the end of this
sectiond. Only the nonlocal partUnl of the potential energy is
kept hereafter in the Smoluchowski equations1d. In our cal-
culations we shall chooseUnl to be the repelling part of the
Lennard-Jones potential,

UnlsRd =
e

R12, for Rù 2a, s5d

wheree is some positive constant.
The usual way to arrive at Eq.s1d ssee, e.g.,f17,18gd is to

select one particle in the suspension, analyze all the forces
acting on it, write the Newton equations, neglect the inertia,
and finally write the corresponding Liouvillescontinuityd
equation which then becomes Eq.s1d. The forces acting on
the selected particle are the force due to the direct particle-
particle interactionssi.e., the forces generated by the poten-
tial Ud, the Brownian forcesthe force generated bykBT ln gd,
and the force mediated by the fluid due to the hydrodynamic
interactionsfexpressed in Eq.s1d in the terms involving the
tensorsL andlg. From the simplifying assumptions made in
the process of the derivation of Eq.s1d we may expect that
the suspensions are rather dilute, isothermal, monodisperse,
homogeneous, and incompressible suspensions of rigid
spheres in Newtonian fluids. The spheres are all identical and
their radiusa is much smaller than the characteristic linear
size L of the fluid container. The concentration of the sus-
pension is limited mainly by considering only binary hydro-
dynamic interactions. Another way to estimate the range of
applicability of the Smoluchowski equation is to derive its
consequences for the macroscopic behavior. Our investiga-
tion proceeds in the latter direction.

Equation s1d has to be supplemented by appropriate
boundary conditions. For the far-field limitR→`, we as-
sume that the correlation functiong tends tonp

2 si.e., to the
uniform distributiond,

gsR→ `d → np
2, s6d

wherenp is the number density of suspended particles, as-
sumed to be a constant.

Another boundary is the surface of the particle,R→2a.
For this boundary we adopt the boundary condition intro-
duced by Batchelorf17g. The flux, defined by the Smolu-
chowski equation, through the boundary, in the direction
perpendicular to it, vanishes—i.e.,unaJauR=2a=0, wherena

=Ra /R and

Ja = SgRb

]va

]rb

+ glabgDbgD + geqLab

]

]Rb

g

geq
, s7d

geq is the equilibrium correlation function defined as

geq= expS−
Unl

kBT
D . s8d

Written explicitly, this condition takes the form

s1s2adgeqs2adUFnb

]

]Rb

g

geq
GU

R=2a
+ 2ags2and

3sm1s2ad − 1dnn:D = 0. s9d

We note that due to the asymptotic behavior ofm1sRd
sm1→1, whenR→2a; see Appendix Ad, the second term in
Eq. s9d vanishes. In the absence of hydrodynamic interac-
tions this term is different from zero and plays the role of the
force driving the correlation functiong out of equilibrium.
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We also note that in the presence of hydrodynamic interac-
tions the functions1 vanishes on the boundaryR=2a as well
ssee Appendix Ad. In spite of it, Eq.s9d remains to be a
meaningful conditionsboth in the presence and in the ab-
sence of hydrodynamic interactionsd selecting a unique solu-
tion to our initial boundary value problemf19g.

In this paper we shall not contribute in any way to the
clarification of the relation between Eq.s1d and the micro-
hydrodynamic viewpoint of suspensions. Our objective is to
take Eq.s1d as an equation representing a given mesoscopic
theory and look towards its more macroscopic consequences.
In particular, we shall investigate the compatibility of Eq.s1d
with thermodynamics, derive a reduced model of Eq.s1d,
and derive the nonlinear rheology implied by it.

III. DYNAMICS AND THERMODYNAMICS
OF HI SUSPENSIONS

In the sequel we want to consider rheological conse-
quences of Eq.s1d. We thus have to extend the set of state
variables by adopting into it the average overall momentum
usrd. The time evolution equations1d extends to

]ua

]t
= −

]

]rg

sugva + dgap + sagd, s10d

]g

]t
= −

]

]Ra
SgRb

]va

]rb
D +

]

]Rg

sglgabDabd

+
]

]Ra

geqLab

]

]Rb

g

geq
. s11d

Equations10d is the standard local momentum conservation
law, v=u /r, r is the overall mass density of the suspension
sa constantd, p is the hydrostatic pressuresdetermined by the
incompressibility requirementd, ands is the extra stress ten-
sor that remains to be specified.

A. Extra stress tensor

In order to find the expression for the extra stress tensor,
we can either turn to microhydrodynamicsssee, e.g.,f17,20gd
and analyze forces acting on a surface element placed inside
the suspension, or we can turn to macroscopic consequences
of Eqs. s10d and s11d fi.e., solutions of Eqs.s10d and s11dg
and to their comparison with results of macroscopic obser-
vations. Since we have already decided not to look into the
microscopic basis of the Smoluchowski equations11d, we
naturally take the second route.

The macroscopic observation that we shall require to be
reproduced in solutions of Eqs.s10d ands11d is the approach
to equilibrium and the applicability of classical thermody-
namics to describe the behavior of suspensions at the equi-
librium. Let Fsu ,gd be the free energy of the suspension. In
a system under consideration it is given by

F =E drS u2

2r
+E dRgsUnl + kBT ln gdD . s12d

We recall that the free energy equals the entropy mines the
energy multiplied by the temperatureT sa constant in this

paperd. For the entropy we take the Boltzmann expression.
The energy is a sum of the kinetic energy of the overall flow
and the potential energykUnll=edRgUnl arising due to the
presence of the suspended particles. As we discussed above
we have excluded the singular hard-core interaction energy
UHC from the free energy.

The requirement that the time evolution is compatible
with thermodynamics implies

dF

dt
ø 0. s13d

As the timet→` the free energyFsu ,gd reaches its mini-
mum. The states at whichF reaches its minima are called
equilibrium statessueq,geqd. As we see immediately from Eq.
s12d, it is the state at which no flow takes placesi.e., u=0d
andUnl= ln geq, wheregeq is the equilibrium pair correlation
function. WhenUnl=0—i.e., when the suspended particles
interact only via the hard-core potential—thengeq=1.

Following f24g, we shall express the compatibility of dy-
namics with thermodynamics in a somewhat stronger re-
quirement. In order to formulate it we need an additional
notation. Letzª su ,gd and Eqs.s10d and s11d be formally
written as

dz

dt
= Fszd. s14d

The right-hand side of Eqs.s10d and s11d—i.e., Fszd—is,
moreover, written as a sum of the time reversible partFsrevd

3szd and the time irreversible partFsirrevdszd:

dz

dt
= Fsrevdszd + Fsirrevdszd, s15d

with

FsrevdSu

g
D =1 −

]

]rg

sugFua
+ dgap + sag

srevdd

−
]

]Ra

SgRb

]Fua

]rb

D +
]

]Rg

sglgabDabd 2 ,

FsirrevdSu

g
D =1 −

]

]rg

sag
sirrevd

]

]Ra
SgLab

]

]Rb

FgD 2 , s16d

where

Dab =
1

2
S ]

]ra

Fub
+

]

]rb

Fua
D

and Fg and Fu denote variational derivatives of the free
energy functionals12d with respect to the corresponding
function—i.e.,Fg=sdF /dgd andFu=sdF /dud.

We recognize the time reversible and irreversible parts of
the vector field by evenness and oddness with respect to time
inversion operator I; Isu ,gd=s−u ,gd. We thus have
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FsrevdsIzd=−Fsrevdszd and FsirrevdsIzd=Fsirrevdszd. We are also
splitting the stress tensor into the time reversible and irre-
versible parts,

sszd = ssrevdszd + ssirrevdszd,

with ssrevdsIzd=−ssrevdszd andssirrevdsIzd=ssirrevdszd.
Now, we are prepared to formulate the stronger require-

ment of the compatibility of dynamics with thermodynamics.
Instead of Eq.s13d, we shall require

SdF

dt
D

srevd
= 0, s17d

SdF

dt
D

sirrevd
ø 0, s18d

where the subscriptssrevd respectivelysirrevd describe the
reversible and irreversible parts, respectively, of the time
evolution equation. In other words, Eqs.s17d ands18d mean
that the time-reversible part of the time evolution is nondis-
sipative and the time-irreversible part is dissipative. What are
the physical arguments with which we can support the re-
quirementss17d and s18d?

First, we note that in the particular case when the time
reversible evolution constitutes the complete time evolution
sas it is, for example, in the case of the time evolution gov-
erned by the Liouville equation corresponding to the Hamil-
ton dynamics of classical particlesd, the time-reversible part
is indeed nondissipative. This is a well-known fact. The re-
quirementss17d ands18d can be thus seen as an extension of
the association of time reversibility with nondissipativity
known from the microscopic time evolution to the mesos-
copic time evolution where the reversible time evolution rep-
resents only a part of the complete time evolution. The sec-
ond argument supporting Eqs.s17d and s18d comes from its
association with the Onsager-Casimir relations. If we linear-
ize Eq.s14d about equilibrium statessi.e., states at whichF
attains its minimumd and use the Onsager-Casimir relations
si.e., the statement that the linearized part of the reversible
and irreversible parts, respectively, ofF, is skew-adjoint and
self-adjoint, respectively, with respect to the inner product
involving the second derivative of the free energy as the
weight functiond then, as we immediately see, the linearized
version of Eqs.s17d and s18d is a consequence of the
Onsager-Casimir relations. The third argument in favor of
Eqs. s17d and s18d comes from its association with theGE-

NERIC formalism ssee f25g and references cited thereind,
which is a structure extracted as a common structure of many
well establishedsi.e., well tested with results of experimental
observationsd mesoscopic dynamical theories describing a
time evolution that is compatible with thermodynamics. This
structure, which can also be seen as a nonlinear extension of
the Onsager-Casimir relationssee f26gd, implies Eqs.s17d
and s18d.

As for the irreversible part of the extra stress tensor, we
shall choose the standard Navier-Stokes constitutive relation
with the overall fluid viscosity containing Einstein contribu-
tion f27g due to one-particle hydrodynamic self-interactions:

sab
sirrevd = − h0S1 +

5

2
fDDag. s19d

We see that the viscosity depends linearly on the volume
fraction f of suspended particles,f=s4/3dnpa

3.
It is easy to verify that

SdF

dt
D

sirrevd
= −

1

2
Dabh0S1 +

5

2
fDDab

−E dRS ]

]Ra

FgDgLabS ]

]Rb

FgD ø 0,

s20d

and thus Eq.s18d holds providedL is a positive definite
tensor andh0 is a positive coefficient.

Next, we findssrevd from the requirements17d. A direct
calculation ofsdF /dtdsrevd sseef24g for more detailsd leads us
to

sab
srevd = −E dRgSRa

]

]Rb

−
1

3
dabRg

]

]Rb

− l̊gab

]

]Rg
DFg.

s21d

The inequalitys13d, which is now guaranteed provided
the extra stress tensor is given by Eqs.s19d ands21d, means
that the free energyF plays in the time evolution governed
by Eqs.s10d and s11d the role of a Lyapunov function. This
Lyapunov function guarantees the approachsast→`d to the
equilibrium sates that minimize the free energy. We thus con-
clude by saying that Eq.s1d is compatible with equilibrium
thermodynamics provided the extra stress tensor is given by
the sum of the irreversible, Eq.s19d, and the reversible, Eq.
s21d, parts,h0.0, andL is a positive-definite tensor.

Finally, collecting all contributions to the extra stress ten-
sor and taking into account the boundary conditionss6d, we
arrive at

sab = sab
hydr + sab

DI + sab
HI , s22d

where

sab
hydr = − h0S1 +

5

2
fD , s23d

sab
DI = 2E

S2

dnSnanb −
1

3
dabDDgs2and −E dRR

]Unl

]R

3Snanb −
1

3
dabDDgsRd, s24d

sab
HI = − 2m1s2adE

S2

dnSnanb −
1

3
dabDDgs2and

−E dRF3sm1 − m2d + R
]m1

]R
+ m1R

]Unl

]R
G

3Snanb −
1

3
dabDDgsRd. s25d

By the symbolDg=g−geq we denote a deviation from equi-
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librium of the correlation function. The integration in Eqs.
s24d and s25d is over the two-dimensional unit sphereS2.

The first term on the right-hand side of Eq.s22d, shydr, is
a contribution from the Newtonian fluid in which particles
are suspended. The second term,sDI, comes from the direct
interactions including the hard coreffirst term in Eq.s24dg
and a long-range soft tail potentialUnl. The third term in Eq.
s22d, sHI, is a contribution arising due to hydrodynamic in-
teractions.

We note that the partsp=sHI +sDI of the extra stress
tensor that arises due to the presence of suspended particles
is traceless. We also note that due to the near-field
asymptotic behavior of the functionm1sRd fm1→1, as R
→2; see Eq.sA7dg the local part of the extra stress tensorsp
si.e., the sum of the first term insHI andsDId vanishes. This
is a consequence of the lubrification approximation used in
the derivation of the near-field asymptotics of the coefficients
m1 andm2 f28g. However, when we consider the suspension
of hard spheres without hydrodynamic interactions, this local
term is different from zero and provides the only contribu-
tion to sp.

It is satisfying to see that the stress tensors29d, derived
above from the requirement of the compatibility of dynamics
with thermodynamics, coincidessin the caseUnl=0d with the
expression obtained by Batchelorf17g in the setting of mi-
crohydrodynamics.

B. Dimensionless formulation

In this subsection we transform the governing equations
introduced above to dimensionless form. We begin by intro-
ducing the dimensionless timet→ t /tS, wheretS is the char-
acteristic relaxation time associated with the Smoluchowski
equations11d:

tS =
6ph0a

3

kBT
. s26d

Another characteristic time arising naturally in Eqs.s10d and
s11d is the hydrodynamic timethyd defined via characteristic
scalar rate of strainġ ffor constant tensorD the scalar strain
rate is defined asġ=sDabDbad1/2g,

thyd = ġ−1. s27d

We introduce dimensionless position coordinatesr andR as
follows:

r → r/a,R → R/a.

The overall momentumu→u /u0, where the characteristic
velocity u0 is defined by

u0 = ra/thyd.

The dimensionless form of the rest of the variables entering
the governing equationss10d and s11d is given by

g → g

np
2, p → thyd

2

ra2 p, sag → 1

h0ġ
sag,

Unl →
1

kBT
Unl, Lab → 3ph0a

kBT
Lag, labg → 1

a
labg.

Herenp is the number density of the suspended particles.
The resulting dimensionless form of Eqs.s10d, s11d, s22d,

and s21d, is now

]ua

]t
= − Pe

]

]rg
Sugva + dgap +

1

Re
sagD ,

]g

]t
= − Pe

]

]rg

vgg − Pe
]

]Ra

Rb

]va

]rb

Dg + Pe
]

]Rg

glgabDab

+
]

]Ra

geqLab

]

]Rb

g

geq
s28d

and the extra stress tensor

sab = − S1 +
5

2
fDDag −

27

8p

f2

PeH2E
S2

dnSnanb −
1

3
dabD

3f1 − m1s2dgDgs2nd −E dRF3sm1 − m2d + R
]m1

]R

+ s1 − m1dR
]Unl

]R
GSnanb −

1

3
dabDDgsRdJ . s29d

Heref=s4/3dnppa3 is the volume fraction of particles in a
fluid.

In the above equations we have introduced two well-
known dimensionless constants: the Reynolds number, Re,
and the Péclet number, Pe, defined as

Re =
u0a

h0
=

ra2ġ

h0
,

Pe =
tS

thyd
= ġ

6ph0a
3

kBT
.

The Péclet number is a ratio of mesoscopicsassociated with
the time evolution of the internal structured and macroscopic
shydrodynamicd time scales. In the Smoluchowski equation
s28d the Péclet number can be regarded as a scalar parameter
measuring strength of the hydrodynamic flow.

IV. MOMENT MODEL OF THE SMOLUCHOWSKI
EQUATION (MS EQUATION)

The possibility that Eq.s28d can be solved analytically in
a closed form is quite remote. We turn therefore to numerical
methods and/or to their appropriate combinations with ana-
lytical methods. We can, at least in principle, take a direct
numerical approach to finding solutions of Eq.s28d. In order
to avoid very cumbersome reformulationssdiscretizationsd of
Eq. s28d needed on this route, we shall follow another route
on which the search for solutions of Eqs.s28d takes a physi-
cal meaning. We begin by realizing that in order to derive a
nonlinear rheology of suspensionssthe main objective of this
paperd we do not need all the details of solutions of the
Smoluchowski equation. We need, as we shall argue below,
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only information about the slow part of the time evolution.
The question then arises as to whether we can identify an
equation, which we expect to be simpler than Eq.s28d ssim-
pler in the sense of finding numerically its solutiond, describ-
ing just the slow time evolution. We shall now proceed to
find such equation.

In order to identify the slow state variables we need to
recognize in the Smoluchowski equation a hierarchy of char-
acteristic relaxation times. Such a hierarchy is revealed if we
look at the set of moments of the orientation vectorsn
=R/R:

Ma1¯an

fkg sRd =
R2

4p
E dngsRdna1

¯ nak
,

wherek indicates the order of the moment. By averaging Eq.
s28d with corresponding weights we construct the following
hierarchy of equations governing the time evolution of the
momentsM fkg sk are even and positive integersd:

]M fkg

]t
= PeHkSkv ·M fkg +

]

]R
Rsm1 − 1dD:M fk+2g + ks1 − m2d

3sSkD ·M fkg − D:M fk+2gdJ +
]

]R
s1ĝeq

]

]R

M fkg

ĝeq

− ksk + 1d
s2

R2SM fkg −
k − 1

k + 1
SksdM sfk−2gddD . s30d

Here k=0,2,4, . . ., ĝeq denotes the equilibrium radial pair
correlation functionĝeq=R2geq, the tensorv is the flow vor-
ticity tensor,

vab =
1

2
S ]va

]rb

−
]vb

]ra
D ,

and the symbolSk denotes the symmetrization operation,

sSkAda1¯ak
=

1

k! oi=1

k!

APisa1¯akd, s31d

wherePi denotes the operator ofi successive permutations
among indicesa1, . . . ,ak. In addition, we assumeM f0g

=trM f2g=sR2/4pdedngsRd andM f−2g=0.
The set of equationss30d, if we consider it in its entirety,

is equivalent to Eq.s28d. What we have gained by writing
Eq. s28d in the form s30d is the possibility of recognizing
slow and fast variables. By limiting ourselves only to the
slow ones, we hope to arrive at a simplifiedsreducedd ver-
sion of Eq.s28d.

We begin by making a few observations about the hierar-
chy s30d. We see that the equation for thekth-order moment
involvessk−2dth- andsk+2dth-order moments. The coupling
to the higher order moments appears only in the terms rep-
resenting the advectionfthe first three terms on the right-
hand side of Eq.s30dg. In the absence of the externally im-
posed flowsi.e., Pe=0d the hierarchy is thus uncoupled. If
we choose anyk=2,4,6, . . ., weobtain a closed set of equa-
tions. As t→`, all the moments approach their equilibrium
values. Moreover, we see that the higher is the order of the
moment, the faster is the approach. Indeed, the angular part

of the second-order differential operator in irreversible part
of the Eq. s28d is proportional to the Laplace operatorL
=s] /]nd ·s] /]nd in the angular variables. This operator has a
discrete spectrum with spherical harmonics, which are linear
combinations of the moment kernelswa1¯am

fmg =na1
¯nam

, as

its eigenfunctions. In particular,kth harmonics is a linear
combination ofk functionswfmg, with møk, and its corre-
sponding eigenvalue isksk+1d which appears in Eq.s30d as
a multiplicative factor in the fifth term on its right-hand side.
Consequently, there clearly exists a separation of relation
times in the space of angular variables of the vectorR. This
consideration implies thatMf2g is the slowestsin the absence
of external forcingd variable among the momentsM fkg. We
shall therefore suggest to choose it as the state variable in our
reduced formulation of Eq.s28d. To simplify the notation, we
shall use hereafterMf2g=m.

Another argument supporting this choice is the observa-
tion that the stress tensors29d turns out to be expressed only
in terms ofm:

s = − S1 +
5

2
fDDab −

27

2

f2

PeH2f1 − m1s2dgm̊s2d

−E
2

`

dRSR
]Unl

]R
s1 − m1d + 3sm1 − m2d + R

]

]R
m1Dm̊J ,

s32d

where m̊=m− 1
3d tr m. As we see from Eq.s32d, the extra

stress tensor depends indeed only onm, and moreover, the
dependence onm is linear.

If we now switch on the imposed flow, the first three
terms on the right-hand side of Eq.s30d are different from
zero and consequently the hierarchys30d becomes coupled.
In particular, we see that the equation governing the time
evolution ofm involves also the momentM f4g. However, as
we see in Eq.s30d, the terms representing the coupling are all
multiplied by the Péclet number. This means that if the Pé-
clet number is small, we can still expect the second moment
to evolve in time in a slower pace than the fourth moment,
which itself evolves in a slower pace than the sixth moment,
etc. Even for larger Péclet numbers, the second moment is
still very likely an appropriate state variable. Our numerical
predictions of the microstructure and rheology presented be-
low indicate that this is indeed the case. The above three
arguments support our hypothesis that the time evolution
generated by the Smoluchowski equations and the time evo-
lution generated by an appropriately constructed equation
governing the time evolution ofmsRd scalled hereafter the
mS equationd are essentially identical provided we look at
the slow part of the time evolution. Below, we shall find the
mS equation and in Secs. V A and V B investigate its solu-
tions.

If we put k=2 in Eq.s30d, we obtain an equation govern-
ing the time evolution ofm:
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]m

]t
= PeHv ·m − m · v +

]

]R
Rsm1 − 1dM f4g:D + s1 − m2d

3sD ·m + m ·D − 2M f4g:DdJ +
]

]R
s1ĝeq

]

]R

m

ĝeq

− 6
s2

R2m̊. s33d

This equation involves so far unspecified fourth order mo-
ment M f4g. In order to continue, we have to express it in
terms of the second order momentm. The function
W:m°Mf4g is called a closure. An ultimate criterion for
choosing the closure is the requirement that solutions to the
closed equationsi.e., to the mS equationd approximate well
solutions to the Smoluchowski equation if we pay most at-
tention to asymptoticst→`d behavior and to the rheological
predictions. Such a criterion is obviously difficult to put into
practical use. In Appendix B we derive a simplefourth-order
sin terms of normalized momentsd closure by requiring some
specific conditions. They are symmetry, normalization, frame
indifference, positive definitness, and an exact match in two
important limiting cases—namely, in the weak flowsi.e.,
near equilibrium, Pe!1d and in the strong flowssi.e., when
Pe→` in uniaxial and biaxial elongation flowsd. With this
closure, the expressionM f4g :D appearing in Eq.s33d be-
comes

M f4g:D = o
n=0

4

M snd
f4g:D,

M s0d
f4g:D =

2

15
D,

M s1d
f4g:D =

2

15
trsm − meqdD +

1

7
fdm̊:D + 2sm̊ ·D + D · m̊dg,

M s2d
f4g:D =

1

tr m
S 4

105
I2D −

2

21
fdsm̊ · m̊d:D + 2sm̊ · m̊ ·D

+ D · m̊ · m̊dg +
1

3
sm̊m̊:D + 2m̊ ·D · m̊dD ,

M s3d
f4g:D =

1

str md2S 8

45
I3D +

1

7
I2fdm̊:D + 2sm̊ ·D + D · m̊dg

−
1

3
fm̊sm̊ · m̊d:D + sm̊ · m̊dm̊:D + 2sm̊ ·D · m̊ · m̊

+ m̊ · m̊ ·D · m̊dgD ,

M s4d
f4g:D =

1

str md3S−
4

21
I3fdm̊:D + 2sm̊ ·D + D · m̊dg

−
4

7
I2fdsm̊ · m̊d:D + 2sm̊ · m̊ ·D + D · m̊ · m̊dg

+ 2fm̊ · m̊sm̊ · m̊d:D + 2m̊ · m̊ ·D · m̊ · m̊gD ,

s34d

where I2 and I3 are the second and third invariants of the
tensorm̊:

I2 = trsm̊ · m̊d, I3 = trsm̊ · m̊ · m̊d.

To complete the formulation of the mS equation, we have
to supply the boundary conditions. We derive them from Eqs.
s6d and s9d by making appropriate averages:

usm/R2duR→` → 1

3
geqd,

UFs1geqR
]

]R

m

ĝeq
GU

R=2

+ uPefm1s2d − 1gM f4gum=ms2d:D = 0.

s35d

Summing up, we have identified a reduced Smoluchowski
equation, called the mS equation, whose solutions have the
following properties:sid If Pe=0, then the asymptoticsi.e.,
equilibriumd solutions of the Smoluchowski equation and of
the mS equation are identicalsin the sense that the second
moment of the equilibrium solution of the Smoluchowski
equation equals the equilibrium solution of the mS equationd.
Both the Smoluchowski and mS equations are compatible
with thermodynamics.sii d If the Péclet number is small,
then, for large times, solutions to the mS equation approxi-
mate well solutions to the Smoluchowski equation.

In order to situate our approach to finding solutions to the
Smoluchowski equation, we compare it with the approaches
to the same problem developed inf3,7,6g. The starting point
in all three papers is an ansatz about the form of the solution.

Phan-Thien f3g assumes that the solutions have a
d-function-like behavior in the dependence onR fi.e., the

solution is proportional todsR−R̂dg. In concentrated suspen-

sions this may indeed be a good approximation withR̂ being
the surface of the particle. In this paper we do not consider
concentrated suspensions. The dependence onR does not
show a sharp peak about any value ofR.

Hessf7g does not discuss rheology and does not include
hydrodynamic interactions. The ansatz used by Hess is the
following: gsRd−geqsRd,aabRaRbhsRd, where geq is the
correlation function at equilibrium and aab

=edRgsRdRaRbhsRd, wherehsRd is a cut off functionsi.e., a
function that approaches zero sufficiently rapidly asR→`
so that the integral existsd. Hess uses thus the assumption of
the separation of scales. As appears from our analysis, such a
separation indeed exists but only in the angular dependence
of gsRd. We do not make any assumption of this type in the
radial dependence. The disadvantage of our approach is that
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we do not calculate the pair correlation functiongsRd fwe
calculate only its momentsmsRdg and thus the structure fac-
tor fthe Fourier transform ofgsRd, a quantity that is observed
in optical measurementsg is missing in the list of our results.

The authors off6g do not include hydrodynamic interac-
tions and consider only the hard-core interparticle potential.
Their ansatz is thatgsRd is expanded in a finite number of
functions introduced byf29g. In Sec. V B we shall compare
our resultssfor the particular case when the hydrodynamic
interactions are absentd with the results obtained inf6g.

V. PREDICTIONS OF MICROSTRUCTURE
AND RHEOLOGICAL PROPERTIES

In order to arrive at data collected in rheological observa-
tions, we have to first solve the set of partial differential
equationss33d for six independent components of the tensor
msR,td. The complexity of this task is considerably reduced
relative to the complexity of the task of solving numerically
the original Smoluchowski equations28d. Due to the un-
bounded domain of the variableR and the nonpolynomial
nonlinearity appearing in the closure relations, the problem
of solving numerically Eq.s33d remains still, however, a
nonroutine problem. We solve the unboundedness of the do-
main by changing the variablesfR→xsRd=1/Rg and the
nonpolynomial nonlinearity by using a nonlinear version of
the Galerkin method known as thegroup finite-element
methodf30g. Details of the numerical approach are given in
Appendix C.

In the context of the mS equationss33d and s32d, the
microstructure of the suspension is characterized by the mi-
crostructure tensor

m*sRd =
1

R2m =
1

4p
E dnnngsRd.

As follows from its definition, the absence of pair correla-
tions si.e., the absence of microstructure in HI suspensionsd
means that the microstructure tensor is proportional to the
unit tensor: namely,m*sRd=s1/3dd. The nonzero tensorq
=m*sRd− 1

3d indicates the presence of the microstructure
which can be induced either by direct interparticle interac-
tions shard-core or nonlocal particle-particle interactionsd or
by flow through advection and hydrodynamic interactions. In
the absence of flow, direct interaction forces create equilib-
rium correlationsmeq

* sRd=s1/3dgeqsRdd which are isotropic
and depend only on the interparticle distanceR. The aniso-
tropy generated by the imposed overall flow creates an an-
isotropy in the microstructure, so that the tensorm* is no
longer proportional tod. Such an anisotropy is created, on
the one hand, by the combined influence of the advection and
direct interactions and, on the other hand, by hydrodynamic
interactions that are anisotropic by their nature.

In order to expose the effect of hydrodynamic interactions
on the microstructure and rheology, we shall investigate sus-
pensions both with and without hydrodynamic interactions.
In the absence of hydrodynamic interactionssi.e., if we put
l=0 and L=dd, the suspensions will be called direct-
interaction sDId suspensions. The singular behavior of the

hard-core potential does not enter explicitly their governing
equations since we take into account the potentialUHC in the
boundary conditions9d. Two types of DI suspensions will be
investigated: one with only the hard-core potential and the
other with the hard-core potential together with the nonlocal
potentials5d.

In both HI and DI suspensions we consider only two-
particle interactions. Since the contributions ofk-particle in-
teractions to the stress are proportional tofk, wheref is the
volume fraction of the suspended particles, we shall present
the stresses in the forms /f2.

Below, we present microstructural and rheological re-
sponses to viscometric flowssi.e., homogeneous shear and
elongation flows that are, as for their dependence on time,
either start up or oscillatoryd. Linear responses to oscillatory
flows implied by the Smoluchowski equation are well known
f12,13g. The results presented in Sec. V A serve thussid to
complete the list of the rheological predictions,sii d to con-
firm, in this particular case, that the consequences of the mS
model and the Smoluchowski equation are identical, andsiii d
to compare the linear responses with the nonlinear responses
presented in the subsequent subsection. Nonlinear responses
to shear and elongation flows, presented in Sec. V B, have
not been, to the best of our knowledge, calculated before.

A. Linear response solution

In this section we look at small linear perturbations of
equilibrium caused by weak oscillatory shear flows with the
rate of strainD=D0e

ivt. The linear response solution to Eq.
s33d has a general form

m = ĝeqS1

3
d + PefD0e

ivtD , s36d

where fsRd, called a linear response function, is at this point
an unknown function. In terms of the correlation function the
ansatzs36d looks like

g = geqS1 +
15

2
Pefnn:D0e

ivtD . s37d

It is important to realize that both the Smoluchowski equa-
tion s28d and the mS equations33d are completely equivalent
from the point of view of linear response theorysi.e., they
lead to the same linear perturbation solutiond. This is because
the closure relation for the fourth moment has been chosen to
be consistent with the equilibrium solution.

Substituting the expressionss36d into Eq. s33d and keep-
ing only linear terms with respect toD, we obtain the fol-
lowing equation determining the linear response functionf:

]

]R
s1ĝeq

]

]R
f − fĝeqS6s2

R2 + ivD
= −

2

15
ĝeqSR

]Unl

]R
s1 − m1d + R

]m1

]R
+ 3sm1 − m2dD .

s38d

We impose the following boundary conditions:
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uf uR→` → 0,

Us1
]f

]R
U

R→2
+

4

15
fm1s2d − 1g = 0, s39d

derived from the conditionss6d and s9d by omitting all non-
linear terms inD.

We solve Eq.s38d by applying a numerical method that is
a linearized version of the method that we use below for the
nonlinear problemfsee Eq.sC4d in Appendix Cg.

Let us look first at stationary flowssv=0d. The remark-
able fact that we note is that the functionf0= f u sv=0d is a
nonpositive functionssee Fig. 1d both in the presence and
absence of hydrodynamic interactions. The nonpositivity of
f0 is a consequence of the nonpositivity of the right-hand
side of Eq.s38d. The consequences of the negative sign of
the response functionf0 can be easily seen in Eq.s36d. Let
D0 be diagonalsthis can be achieved by choosing appropri-
ately the coordinate systemd. We see from Eq.s36d thatm is
also diagonal. Moreover, we see that the larger is the entry of
D0 snote that larger entry means larger stretching of the im-
posed flowd, the smaller is the corresponding entry of the
microstructural tensorm. This means that the correlations are
larger in the direction of the contraction of the imposed flow
and not in the direction of its stretching as it is in the case of
polymeric suspensions. This effect persists in the nonlinear
response. We shall see it in the next subsection.

By inserting Eq.s36d into the expressions29d, we find the
effective complex viscosity

h*svd = h0S1 +
5

2
w + Ksvdw2D , s40d

where the functionKsvd is defined as

Ksvd =
27

2 H8geqs2dfm1s2d − 1gfs2,vd +E
2

`

dRgeqR
2fsR,vd

3FR
]m1

]R
+ R

]Unl

]R
s1 − m1d + 3sm1 − m2dGJ . s41d

Beside the complex viscosity, the quantity of interest in
oscillatory flows is the complex modulusG* =G8+ iG9 re-
lated to the complex viscosityh*svd as follows:G* = ivh* .

Figure 2 shows elastic modulusG8 and effective viscosity
h8 as functions of the frequencyv.

We observe thatG8svd reaches a constant valuesG8̀ d in
the limit v→`. Here we have to pose and note that at suf-
ficiently high frequencies we eventually reach the time scales
t!tS, which are out of the realm of the applicability of the
Smoluchowski equations1d and, in fact, also the Fokker-
Planck equation. We observe, however, that the quantity
G8svd reaches the limitG8̀ at frequencies that still remain
within the domain of applicability at least in the case of HI
suspensions. Indeed, the plateau forG8svd starts atv<10
for HI suspensions and atv<106 for DI suspensions. We
should stress again that the high-frequency limits for the mS
equation and Smoluchowski equation are completely identi-
cal because of the equivalence of these two equations in
linear near-equilibrium approximation. The well-knownssee,
for example,f12,13gd analytical estimation for the valueG8̀
in HI suspensions is

G8̀ <
9

5
w2E

2

`

dRR2geqFR
]Unl

]R
s1 − m1d + R

]m1

]R

+ 3sm1 − m2dG2

. s42d

For hard spheres with hydrodynamic interactions this quan-
tity takes the value

G8̀ < 35.56,

and it coincides well with the limit reached in our computa-
tions. We are unable to derive a similar analytical estimate
for G8̀ in the case of DI suspensions.

B. Nonlinear response to start up and steady shear
and elongation flows

We denote the normalized dimensionless gradient of ve-
locity by Lab= ġ−1]va /]rb, whereġ=s]va /]rbds]vb /]rad1 / 2.
In the simple shear flow,

L = 30 1 0

0 0 0

0 0 0
4 , s43d

and in the elongation flow,

L =
1
Î632 0 0

0 − 1 0

0 0 − 1
4 . s44d

First, we analyze how the microstructure changes in start up
flows. In our numerical calculations, the suspension rests ini-

FIG. 1. Dependence of the linear response functionf sdimen-
sionlessd on interparticle distanceR spresented in dimensionless
units R/ad in a stationary flowsv=0d of suspensions of hard
spheres with and without HI and suspension of soft spheres without
HI interacting by nonlocal potentialUnl, Eq. s5d, with e=104.
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tially at equilibrium sg=geq,L =0d; then, at timet=0, the
overall velocity gradient PeL jumps instantly from zero to its
steady value. Figures 3 and 4 show the behavior of the mi-
crostructure tensorm* for two cases: suspension of hard
spheres with and without hydrodynamic interactions. We
represent the tensorm* by its trace and correlation ellipses
defined as projections of ellipsoids described by the equation

o
i j =1

3

xism*di j
−1xj =

3

geqtr m* s45d

on thesx1,x2d plane. The normalization factor trm*geqsRd /3
is chosen in such a way that the correlation ellipses45d at the
equilibrium state is represented by a sphere with unit radius
sfor any Rd. In both flows, Eqs.s43d and s44d, the third co-
ordinate is not important due to the translational symmetry
along thex3 axis in shear flow and the rotational symmetry in
thesx2,x3d plane in the elongational flow. Consequently, pro-
jection on the planex3=0 provides enough information about
the microstructure.

We observe that at largeR, in all suspensions, the corre-
lation ellipses become circles. This indicates that the corre-
lation anisotropy decays whenR increases. For smallR, the
anisotropy of the microstructure is significant. We observe
that in both suspensions the direction of the major axis of the
correlation ellipse is inclined towards the direction of the
strongest flow compressionsi.e., towards the direction of the
eigenvectors corresponding to smallest eigenvalue of the rate
of strain tensorDd and not towards the flow stretching like in
the case of polymeric solutions. In the latter case the micro-
structure tensor characterizes the orientation of polymeric
molecules in the physical spacesmore precisely, orientation

of molecules coincides with the orientation of the ellipsoid of
correlations induced by intramolecular forcesd. This effect
can be seen as a nonlinear version of the nonpositivity of the
linear response that was observed in the linear casessee the
preceding subsectiond. The difference that we have just noted
is explained by the difference in the character of the interac-
tions. The forces generated by the hard-core potential as well
as the forces generated by hydrodynamic interaction have a
repelling character. The interaction forces decrease with in-
creasing the distance while the intramolecule forces in poly-
meric solutions are attractive and increase with increasing
the distance.

Next, we discuss standard viscometric quantities associ-
ated with the start up shear and elongation flows. Here we
have to repeat the comment that we have made in the previ-
ous subsection in the context of the limitv→`. Indeed,
reactions to start-up flows are determined, in the initial small
period, by fast processes that are outside of our model. The

FIG. 2. The dimensionless effective viscosityDh=fResh*d
−hhydrg /h0, where hhydr=h0f1+s5/2dfg, and the dimensionless
elastic modulusG8=ResG*d /G0, whereG0=h0/tS andtS is given
by Eq. s26d, as functions of dimensionless frequencyv sas trans-
formed from dimensional formv→vtSd for suspensions of hard
spheres with and without HI and suspensions of soft spheres with-
out HI. Soft spheres interact directly by nonlocal potential, Eq.s5d
with e=104, in addition to the hard-core potential, Eq.s4d.

FIG. 3. Trace of the dimensionless microstructure tensor, trm* ,
and the correlation ellipses in a moderately strong shear flowsPe
=10d of suspension of hard spheressad with HI and sbd without HI.
All correlation ellipses correspond tot=10 for figuresad and t=50
for figure sbd. Time t and distanceR are presented in dimensionless
units t→ t /tS, wheretS is given by Eq.s26d, andR→R/a.

NONLINEAR MICROSTRUCTURE AND RHEOLOGY OF… PHYSICAL REVIEW E 71, 051503s2005d

051503-11



natural averaging made by experimental apparatus recording
the reaction of the suspension may however bring the ob-
served behavior to the realm of our model. A detailed discus-
sion of this point is clearly beyond the scope of this paper. In
the case of the start up shear flow, these quantities aresin
terms of the dimensional variablesd the normalized shear vis-
cosity hs=−s12/ ġ, the normalized first and the second nor-
mal stress coefficientsc1=ss22−s11d / ġ2, c2=ss33−s22d / ġ2,
where sab are the components of the dimensional extra
stress tensor. In the elongation flow, the only interesting vis-
cometric parameter is the normalized elongation viscosity
hel=ss22−s11d / ġ. After the transformation to dimensionless
variablesssee the Sec. III Bd these quantities become

hs = − s12, s46d

c1 = Pe−1ss22 − s11d, s47d

c2 = Pe−1ss33 − s22d, s48d

hel = s22 − s11, s49d

wheres is a dimensionless stress tensor.
Figures 5–9 show rheological predictions for HI suspen-

sion as well as DI suspensions. We are comparing them in
order to observe similarities and differences in the effects
produced by hydrodynamic interactions in combination with
hard-core interparticle interactions and by purely hard-core
interactions.

In the shear flow our predictions confirm experimentally
observedf4g shear and normal stress thinning behaviorsi.e.,
decay with growth of Pe numberd in HI suspensions at least
for Pe ranging from 0 to 500. The same behavior pertains in
DI suspensions. In the time evolution of all rheological quan-
tities we observe an “overshot” followed, in some cases, by
weak and strongly damped oscillations before reaching
steady-state values. The overshoots and the damped oscilla-

FIG. 4. Trace of the microstructure tensor, trm* , and correlation
ellipses in moderately strong elongation flowsPe=10d of suspen-
sions of hard spheressad with HI andsbd without HI. All correlation
ellipses correspond tot=50 for figuresad and t=10 for figuresbd.
Time t and distanceR are presented in dimensionless unitst
→ t /tS, wheretS is given by Eq.s26d, andR→R/a.

FIG. 5. Time dependence of the dimensionless and normalized
particle shear viscosity,Dh=hs−hhydr, wherehhydr=1+5f /2 and
hs is defined in Eq.s46d in start-up simple shear flow of suspensions
of hard spheressad with HI sbd without HI. Time t is presented in
dimensionless unitst→ t /tS, wheretS is given by Eq.s26d.
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tions are more pronounced in flows with moderate Péclet
number, Pe, and are negligible for small and large Pe.

Another observation concerns the second normal stress
coefficient which in our tests appears to be, at steady states,
negative, in both HI and DI suspensions. This is in accor-
dance with observations made by other researchersf4g, but in
disagreement with Phan-Thienf3g.

We also note that within the tested range of Péclet num-
bers we do not see the thickening behaviorsi.e., increase
with increasing Ped. Such behavior has been observed in ex-
perimental measurementsf4g as well as in numerical simu-
lations f5gd in concentrated suspensions and for large Péclet
numbers. The reasons why we do not see it may be the
following: the thickening effect arises due to the physics that
we did not put into our governing equationsse.g., the role of
more-than-two particle interactions that certainly play an im-
portant role in concentrated suspensionsd, and/or the thicken-
ing effect begin to appear for large Pćlet numbersslarger

than Pe.102d for which, due to the stiffness of our discrete
equations, we are unable to produce numerical results with
sufficient accuracy.

In order to test our method of solution of the Smolu-
chowski equations we compare our results with results ob-
tained by using other methods. In particular, we compare the
predictions for the shear viscosity and the first normal stress
coefficient in the case of hard spheres without hydrodynamic
interactions with the predictions based on approximate solu-
tions found by Bławzdziewicz and Szamelf6g. We see that
our results for the shear viscosity coefficient agree well with
the results reported inf6g for small Pe. The first normal stress
coefficient as well as the shear viscosity coefficient for large
Pe appear to be different. A detail comparison of our and the
Bławzdziewicz-Szamel approximations is needed to explain
the discrepancy.

Our results for start-up elongation flows reveal a remark-
able qualitative difference between HI and DI suspensions.
In HI suspensions we see a thinning behavior for the elon-
gation viscosityhel at large Pe while in DI suspension we see

FIG. 6. Time dependence of the dimensionless normalized first
s47d and seconds48d normal stress coefficients in start-up simple
shear flow of suspensions of hard spheressad with HI and sbd with-
out HI. Timet is presented in dimensionless unitst→ t /tS, wheretS

is given by Eq.s26d.

FIG. 7. Time dependence of the dimensionless normalized elon-
gation viscositys49d in start-up elongation flow of suspensions of
hard spheressad with HI and sbd without HI. Time t is presented in
dimensionless unitst→ t /tS, wheretS is given by Eq.s26d.

NONLINEAR MICROSTRUCTURE AND RHEOLOGY OF… PHYSICAL REVIEW E 71, 051503s2005d

051503-13



a thickening behavior. However, we note that at small Pe
sPe!1d, DI suspensions also show a weak thinning behav-
ior.

The difference between the elongation viscosity of HI and
DI suspensions is explained by the peculiar behavior of hy-
drodynamic interactions when two particle are close to each
othersR is close to 2d. According to the lubrification approxi-
mation sseef10,28gd, which is used to derive the near-field
asymptotic behavior of the functions1,2 in Eq. s2d andm1,2
in Eq. s3d, the hydrodynamic interaction compensates the
hard-core interaction so that the projection on the normal to
the particle surface of the sum of the two forcessone coming
from the fluid and the other from the hard cored equals zero
at the surface. Consequently, the suspensions with hydrody-

namic interaction show much weaker resistance to the flow
compression than suspensions with only hard-core interac-
tions. In strong flows, the hard-core interactions create very
high strains along directions of the compression because the
particles strongly resist being drawn near to each other.
However, the strong repulsion is, at least partly, shielded by
hydrodynamic interactions, even if the hydrodynamic inter-
actions retain still the repelling character.

VI. CONCLUDING REMARKS

We have investigated in this paper two types of suspen-
sions: HI and DI suspensions. We shall now compare them
with dilute polymeric suspensions that have been extensively
studied in the literaturessee, e.g.,f14gd. Before making the
comparison we note that the three suspensions are idealiza-
tions representing three extreme cases. In real suspensions
the features of the above three idealizations are mixed. A
better understanding of the relationship between microstruc-
ture and rheology in HI, DI, and polymeric suspensions is
only a step towards understanding the rheology of real sus-
pensions.

We begin the comparison with the physical settings. All
three suspensions are assumed to be isothermal, incompress-
ible, and spatially homogeneous. The fluid in which par-
ticles, are suspended is in all three suspensions the same. It is
a Newtonian fluid. The suspended particles are structureless
srigid spheresd in HI and DI suspensions and with an internal
structuresfor example, the particles are modelled as dumb-
bellsd in polymeric suspensions. In all three cases the sus-
pended particles are subjected to the Brownian force and the
drag force imposed by flow. In HI suspensions in addition to
the latter the suspended particles are subjected to the hydro-
dynamic interaction. There are no intraparticle forces in-
volved in HI and DI suspensions; there is such forcesthe
force originating from the spring connecting the two spheres
of the dumbbelld in polymeric suspensions. Typically, the
intraparticle potential in polymeric suspensions is chosen to

FIG. 8. Steady-state values of the dimensionless normalized par-
ticle shear viscosity,Dh=hs−hhydr, where hhydr=1+5f /2 and
hshear is given in Eq. s46d, the dimensionless firstsc1d and the
secondsc2d normal stress coefficients, Eqs.s47d ands47d, vs Péclet
number Pe in a simple shear flow of suspension ofsad hard spheres
with HI and sbd hard and soft spheres without HI. Dash-dotted lines
correspond to the approximate solution by Bławzdziewicz and
Szamelf6g. Soft spheres interact directly by nonlocal potential, Eq.
s5d with e=104, in addition to the hard-core potential, Eq.s4d.

FIG. 9. Steady-state values of the dimensionless elongation vis-
cosity,hel, Eq. s49d, vs Peclét number Pe in an elongation flow for
suspension of hard spheres with and without HI.
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be proportional toR2 for small R and reaching infinity for a
finite R fthe so-called finitely extensible nonlinear elastic
sFENEd potentialg. There are no interparticle forces involved
in the dilute polymeric suspensions; the interparticle force
involved in HI and DI suspensions is generated by the hard-
core potentials4d.

Next, we compare the theoretical descriptions. In all three
suspensions the internal structure is chosen to be described
by a pair correlation functiongsRd or alternatively by the
microstructure tensorm*sRd, which is the second moment
fm*sRd=s4pd−1ednnngsRd, where R= uRu and n=R/Rg of
gsRd in the unit vectorn. In polymeric suspensions the vec-
tor R is the intraparticle coordinatesthe end-to-end vector of
the dumbbell that models the particled and in HI and DI
suspensions the vector connecting two suspended particles.
The functiongsRd represents the intraparticle correlation in
polymeric suspensions and the pair correlation function of all
suspended particles in HI and DI suspensions. The micro-
structure tensorm*sRd can be integrated overR only in poly-
meric suspensionsfthe tensormc=edRR2m*sRd, called a
conformation tensor, is a very frequently used microstruc-
tural state variableg. In all three suspensions, the equation
governing the time evolution ofgsRd is the Smoluchowski-
type equation.

Finally, we compare the microstructure and the rheologi-
cal behavior. As for the microstructure, there is an essential
difference in the responses to flow deformations in polymeric
suspensions and suspensions of structureless particles. The
“direction of ordering” defined to be the eigenvector ofmsRd
corresponding to its largest eigenvalue takes the direction of
the extension of the imposed flow in polymeric suspensions
and the direction of the contraction in suspensions. We have
seen it in both the linear and nonlinear responses. The dif-
ference is a consequence of the repulsive character of the
hydrodynamic and direct hard-core interactions.

Now, we turn to the rheological responses. Although the
responses to simple shear flows are qualitatively similar in
both polymeric suspension and suspension of structureless
particles, we see an essential difference in elongation flows.
In shear flows, for all three suspensions, we see shear thin-
ning for the viscosity and the first and second normal stress
differences and negative second normal stress coefficient. In
elongation flows, the polymeric suspensionsswith the FENE
potentiald always show thickening before reaching a plateau.
In HI suspensions we observe thinning and in DI suspensions
thickening in the elongation flow. The main reason for all the
differences in the rheological behavior of polymeric and
structureless particle suspensions is the difference in the
character of the forces involved. The intraparticle forces in
polymeric molecules are attractive and tend to infinity at
larger distances. On the other hand, the interparticle forces as
well as the forces generated by hydrodynamic interactions
between structureless suspended particles are repulsive and
decrease as the interparticle distance increases.
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APPENDIX A: KINETIC COEFFICIENTS s1,s2,m1,m2

The kinetic coefficientsL and l fsee Eqs.s2d and s3dg
arise from the microhydrodynamics investigationsStokes’
problemd of the motion of rigid spheres in a Newtonian fluid.
It is not our intention in this paper to contribute to the solu-
tion of this difficult problem. We shall be content with the
approximative solutionf28g obtained for two suspended par-
ticles. We will work with dimensional notation that were
used in Sec. II. In the far-field limit—i.e., in the limitR
→`—we use the following approximationf17,28g:

s1 = 1 −
3

2

a

R
+

a3

R3 −
15

4

a4

R4 + o„sa/Rd6
…, sA1d

s2 = 1 −
3

4

a

R
−

1

2

a3

R3 + o„sa/Rd6
… sA2d

and

m1 = 5
a3

R3 − 8
a5

R5 + 25
a6

R6 + o„sa/Rd7
…, sA3d

m2 =
16

3

a5

R5 + o„sa/Rd6
…. sA4d

In the limit R→2a sthe near-field limitd f28g,

s1 → 2sR/a − 2d, sA5d

s2 → 0.401 sA6d

and

m1 → 1 − 4.077sR/a − 2d, sA7d

m2 = 0.406. sA8d

Here we are keeping only the lower-order polynomial part of
Batchelor’s solution, dropping higher-order logarithmic
functions.

We interpolate both asymptotics by using a simple Padé
approximation. Namely, we add higher-order terms with re-
spect toR−1 in the far-field approximation and choose coef-
ficients so that the resulting polynomial matches the near-
field asymptotics. This procedure results in the following
interpolations:

s1 < 1 −
3

2

a

R
+

a3

R3 −
15

4

a4

R4 + 109.0
a6

R6 − 236.0
a7

R7 ,

s2 < 1 −
3

4

a

R
−

1

2

a3

R3 − 10.336
a6

R6 sA9d

and

m1 < 5
a3

R3 − 8
a5

R5 + 25
a6

R6 − 423.712
a7

R7 + 907.424
a8

R8 ,

m2 <
16

3

a5

R5 + 15.317
a6

R6 . sA10d
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We note that the version of the Padé interpolationsA9d
has one important property: the functionss1 ands2 remain
nonpositive on entire domainI =f0,1/2g. This condition is
sufficient to ensure the non-negativity of the matrixL fsee
Eq. s2dg.

Although there are more accurate and technically more
involved solutionsf10,21–23,31g to the Stoke’s problem that
can be used to calculateL andl in the Smoluchowski equa-
tion, we choose for convenience to work with our simple
approximation. For two binary hydrodynamic interactions
this approximation matches correctly the leading orders in
the far- and near-field asymptotic limits. We believe that
more accurate approximations in the transient domainsmod-
erately largeRd will not change significantly the solutions
that we have found.

APPENDIX B: POLYNOMIAL CLOSURE

In this appendix we derive a simple closure relation for
the fourth order momentM f4g; i.e., we expressM f4g in terms
of the second-order momentm and possibly also of the sym-
metrized velocity gradientD. We follow the strategy intro-
duced inf32,33g.

After renormalizing the distribution functiongsRd, we
look for a closure relation in the form

M f4gsm,Dd = trsmdWsM,Dd,

whereW depends only on the normalized second-order ten-
sor

M =
1

trsmd
m,

which has unit trace.
Now, we proceed as follows: First, we select properties of

M f4g that we require to be preserved in the closure. Second,
we construct functionsW of m satisfying the properties.

The properties that we require fromW are the following.
sad Frame indifference: the functionWsM ,Dd should

preserve its form in any coordinate system.
sbd Symmetry: the tensorWabgd must be symmetric

with respect to permutation of any two indices.
scd Normalization:Waabg=Mbg.
sdd Boundedness:

sid Upper boundary:

Wabgd ø 1, for anya,b,g,d.

sii d Lower boundary:

W ù MM ,

which essentially means that the quadratic formBsqd
=q: sW−MM d :q, defined on 333 matricesq, is positive
definite—i.e.,Bsqd.0, for anyq. This inequality is a con-
sequence of the following relation:

Bsqd = kfq:sn − knldg2l,

where k•l stands for averaging over angle variables:k•l
=s4pd−1edn •g. Due to symmetries with respect to index

permutations, a more general inequality is valid:

W − S4sMM d ù 0, sB1d

where S4 denotes a symmetrization operator as defined by
Eq. s31d.

Now, we want to constructWsMd satisfying the above
properties. To begin with, we assume that the fourth-order
tensorW depends only on the second-order tensorM si.e.,
we assume thatW does not depend explicitly onDd. This
assumption is equivalent to the hypothesis about theortho-
tropic character of a closure relationf32g. Since trM repre-
sents a normalization of the functiong in a space of angle
variables, the normalized tensorW does not depend on trM
but rather on its traceless partM̊ =M −1/3d. The tensorM̊
can also be interpreted as a nonequilibrium perturbation of

the tensorM fi.e., M̊ =M −Meq, whereMeq=s1/3ddg. A re-

striction in the polynomial order inM̊ has then physical in-
terpretation of the restriction to states that are not too far
from equilibrium.

Any fourth-order tensor constructed from the second-

order tensorM̊ and satisfying the propertiessad and sbd can
be written in the form

W = S4ha1dd + a2dM̊ + a3dM̊ · M̊ + a4M̊M̊ + a5M̊sM̊ · M̊d

+ a6sM̊ · M̊dsM̊ · M̊dj, sB2d

where the scalar coefficientsai, i =1, . . . ,6 are functions of

two invariants:I2=trsM̊ ·M̊d, I3=trsM̊ ·M̊ ·M̊d.
Condition sbd leaves only three functionssamong six

functionsai , i =1, . . . ,6d to be linearly independent. The re-
lations determining the first three coefficients are

a1 =
1

5
+

2

35
I2a4 −

1

15
I3a5 +

2

35
I2
2a6,

a2 =
6

7
−

2

7
I2a5 −

4

21
I3a6,

a3 = −
4

7
sa4 + I2a6d. sB3d

The remaining coefficientsa4, a5, and a6 will be now
specified by discussing particular flow regimes.

First, we note that the closure expressionssB2d and sB3d
are consistent with the equilibrium solutionM̊ =0, W
=4/5S4sddd by constructionswe assume here that all the
functionsai , i =1, . . . ,6, are not singulard.

In the system of coordinates whereM is diagonal,Mab

=dabca, the axial symmetry of flow means that two among
three eigenvaluesci are equal. We assume that the directions
of the eigenvectors ofD coincide with the directions of the
eigenvectors ofM. At least one or two eigenvectors related
to the eigenvaluesai are parallel to the directions of the flow
elongation. In the limit of strong flows,ġ→`, the corre-
sponding eigenvalues become zero. Thus, we can consider
two limiting cases: one with two zero eigenvalues and the
other with one zero eigenvalue. The first case corresponds to
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the uniaxial compression flowssqueezing flowd and the sec-
ond to the uniaxial elongationsbiaxial compressiond flow.
Due to the rotational invariance, we can combine these flows
with any kind of homogeneous rotation. Without loss of gen-
erality, we can choose for the first casec1=1, c2,3=0 and for
the second casec1=0, c2=1/2, andc3=1/2. Theelements of
W become, in the first case,W1111=1, W2222=0, andW3333
=0, and in the second case,W1111=0, W2222=3/8, and
W3333=3/8. Wenote that the remaining components depend
on these three components due to the symmetry and the nor-
malization propertiessad andsbd. We shall limit ourselves to
the case when the coefficientsa4, a5, anda6 are constants—
i.e., independent ofR and of the invariantsI2, I3. Substituting
the data for the two strong flows into expressionsB2d we find
one parametric set of solutions:

a4 =
4

3
−

1

18
a6,

a5 = − 1 −
1

6
a6.

Our choice for coefficient choice isa6=6 which leads to the
solution

a4 = 1, a5 = − 2, a6 = 6. sB4d

This choice ofa6 is dictated by the restrictionsd iid swhich
implies a6.0d and by requiring that the part of the closure
s34d, including terms up to the second polynomial order with

respect toM̊ sthe casea5=0 and a6=0d, represent also a
valid closure relation. By a valid closure we mean a closure
that satisfies the requirementssad–sdd, matches the near-
equilibrium solution, and matches one strong flow limit:
namely, the uniaxial compression flow.

APPENDIX C: FINITE-ELEMENT METHOD
FOR SOLVING THE MS EQUATION

In this appendix we discuss the finite-element method that
we use to solve Eqs.s32d–s34d. The first problem that we
have to tackle is the unboundedness of the domain ofR. We
solve it by introducing a new variablex by R→x=1/R. The
variablex has now a bounded domain 0øxø1/2. Under the
transformationR→x=1/R, Eq. s33d becomes the following
partial differential equation:

]m

]t
= PeHv ·m − m · v − x2 ]

]x
x−1Rsm1 − 1dM f4g:D

+ s1 − m2dsD ·m + m ·D − 2M f4g:DdJ + x2 ]

]x
s1geq

3
]

]x

m

ĝeq

− 6s2x
2m̊. sC1d

In order to solve it, we introduce the finite-element approxi-
mation ofmsxd:

msxd = meqsxd + geqo
n=1

N

ensxdmn, sC2d

where the functionsen represent a fixed set of finite ele-
ments.

The second problem that we have to face is the nonpoly-
nomial nonlinearity appearing in the closureM f4gsm,xd. We
solve this problem by turning to thegroup finite-element
methodf30g which suggests to expand the nonlinear term
M f4gsm,xd in the finite elements as follows:

M f4gsm,xd = Meq
f4gsxd + o

n=1

N

ensxdM̂n
f4g, sC3d

where M̂n
f4gsm,xd=M f4gsmn,xnd /geqsxnd and Meq

f4gsxd is the
value of the functionM f4gsm,xd at equilibrium, Meq

f4gsxd
=M f4gsmeq,xd, or, explicitly,

Meq
f4gsxd =

1

5
ĝeqsxdS4sddd.

In the rest of the calculations we follow the standard
Galerkin method with averaging given byk•leq=e0

1/2dxgeq·;
geq is the equilibrium correlation function. We arrive at the
following system of equations:

o
k

unkfṁk − Pesv ·mk − mk · vdg

= PehnD + PeFo
k

qnkwk:D + o
k

rnksD ·mk + mk ·D

− 2wk:DdG − o
k

Vnkmk − o
k

Gnkm̊k, sC4d

with the coefficients

unk = kenekleq,

qnk =KS2en + x
]en

]x
Dsm1 − 1dekL

eq
,

rnk = keneks1 − m2dleq,

Vnk =Kx2s1S2en + x
]en

]x
DS2ek + x

]ek

]x
DL

eq
,

Gnk = 6kenx
2s2ekleq,

hn =
2

15
Kx−2enF3sm1 − m2d − x

]m1

]x
− x

]Unl

]x
s1 − m1dGL

eq

+
4

15
ufgeqsm1 − 1dengux=1/2. sC5d

The boundary conditions6d is accounted for by requiring that
all finite-element functionsek take zero value at the boundary
x=0—i.e., eks0d=0, k=0, . . . ,N. The second boundary con-
dition s9d is a natural boundary condition for the partial dif-
ferential equationsC1d. It is incorporated via boundary terms

NONLINEAR MICROSTRUCTURE AND RHEOLOGY OF… PHYSICAL REVIEW E 71, 051503s2005d

051503-17



emerging in by part integrationsfthe last term in the expres-
sion for hn in Eq. sC5dg. The matricesV andG are symmet-
ric and positive definite due to our choice of integration
weightsen and finite-element functionsgeqek. Consequently,
it is the choice of the finite-element approximationsC2d and
of the integration weights that provides us with the required
dissipative properties of the finite-element form of the irre-
versible part of the time evolution equations.

In our subsequent calculations we choose the finite-
element functionsen to be a standard linear elementsf30g
which are associated with the partition of the interval
f0,1/2g by a set of pointsx0,x1, ¯ ,xN, wherex0=0 and
xN=1/2.

After solving Eq. sC1d, we compute the stress tensor
which, in the the finite-element approximation, becomes

s = − S1 +
5

2
fDD +

405

4

f2

Peon=0

N

hnm̊n, sC6d

wherehn are taken from Eq.sC5d.

To solve the linear response equations38d we use the
linearized version of the same finite-element method. With
the finite-element approximation

f = o
n

ensxdfn, sC7d

we are led to the following algebraic equation:

sVnk + Gnk + ivLnkdfk = hn, sC8d

with the matricesVi j , Gi j , andLij and the vectorh given in
Eqs.sC5d. We note that Eq.sC8d has to be solved for real and
imaginary parts of the coefficientsfn.
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